The role of manganese superoxide dismutase in the growth of pancreatic adenocarcinoma.

نویسندگان

  • Joseph J Cullen
  • Christine Weydert
  • Marilyn M Hinkhouse
  • Justine Ritchie
  • Frederick E Domann
  • Douglas Spitz
  • Larry W Oberley
چکیده

Chronic pancreatitis, K-ras oncogene mutations, and the subsequent generation of reactive oxygen species (ROS) appear to be linked to pancreatic cancer. ROS have also been suggested to be mitogenic and capable of stimulating cell proliferation. Cells contain antioxidant enzymes to regulate steady state levels of ROS produced by products of metabolism. The aims of our study were to determine antioxidant enzyme activity in pancreatic cancer cells and correlate enzyme activity with tumor growth, as well as determine whether tumor cell growth could be altered with antioxidant gene transfection. Western blots, enzyme activity, and enzyme activity gels were performed for manganese superoxide dismutase (MnSOD), copper/zinc, catalase, and glutathione peroxidase in normal human pancreas and in the human pancreatic cancer cell lines BxPC-3, Capan-1, MIA PaCa-2, and AsPC-1. Cell population doubling times were determined and correlated with antioxidant enzyme activity. MnSOD was overexpressed in MIA PaCa-2 using an adenoviral vector, and the effect on cell growth was determined. The cell pancreatic cancer lines BxPC-3, MIA PaCa-2, and AsPC-1 had decreased levels of MnSOD immunoreactive protein as well as activity and decreases in MnSOD levels correlated well with increased rates of tumor cell proliferation as determined by cell doubling time. No correlation could be found between cell growth and levels of copper/zinc superoxide dismutase, catalase, or glutathione peroxidase. Enforced expression of MnSOD by adenovirus transfection in the rapid growing cell line MIA PaCa-2 increased MnSOD immunoreactivity and MnSOD activity and decreased growth rate. Overexpression of MnSOD may be effective in growth suppression of pancreatic cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth of Pancreatic Adenocarcinoma The Role of Manganese Superoxide Dismutase in the Updated Version

Chronic pancreatitis, K-ras oncogene mutations, and the subsequent generation of reactive oxygen species (ROS) appear to be linked to pancreatic cancer. ROS have also been suggested to be mitogenic and capable of stimulating cell proliferation. Cells contain antioxidant enzymes to regulate steady state levels of ROS produced by products of metabolism. The aims of our study were to determine ant...

متن کامل

Superoxide Dismutases in Pancreatic Cancer

The incidence of pancreatic cancer is increasing as the population ages but treatment advancements continue to lag far behind. The majority of pancreatic cancer patients have a K-ras oncogene mutation causing a shift in the redox state of the cell, favoring malignant proliferation. This mutation is believed to lead to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and su...

متن کامل

Modulation of reactive oxygen species in pancreatic cancer.

PURPOSE The aim of the present study was to compare the effects of the three different forms of the antioxidant enzyme superoxide dismutase [i.e., manganese superoxide dismutase (MnSOD), copper zinc superoxide dismutase (CuZnSOD), and extracellular superoxide dismutase (EcSOD)] on the malignant phenotype of human pancreatic cancer. EXPERIMENTAL DESIGN Human pancreatic cancer cell lines were i...

متن کامل

Elevation of manganese superoxide dismutase gene expression by thioredoxin.

Manganese superoxide dismutase (MnSOD) is a mitochondrial enzyme that dismutates potentially toxic superoxide radical into hydrogen peroxide and dioxygen. This enzyme is critical for protection against cellular injury due to elevated partial pressures of oxygen. Thioredoxin (TRX) is a potent protein disulfide reductase found in most organisms that participates in many thiol-dependent cellular r...

متن کامل

Comparative modelling of 3D-structure of Geobacter sp. M21 (a metal reducing bacteria) Mn-Fe superoxide dismutase and its binding properties with bisphenol-A, aminotriazole and ethylene-diurea

Superoxide dismutase play important roles in iron-respiratory bacteria such as Geobacteraceae as an antioxidant defense, and probably an effective enzyme of electron transfer network. Regarding the application of iron-respiratory bacteria in environmental biotechnology particularly biodegradation and bioremediation, understanding the mechanism of inhibition/induction of superoxide dismutase by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 63 6  شماره 

صفحات  -

تاریخ انتشار 2003